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Abstract
The Green’s function for the Helmholtz differential operator ∇2 +λ(λ+N −1)

on the N-dimensional (with N � 1) hyperspherical surface S
N of unit radius is

investigated. Its closed form is shown to be

G(N)(λ;n,n′) = π

(N − 1)SN sin(πλ)
C

((N−1)/2)

λ (−n ·n′),

where SN is the area of S
N , C

(α)
λ (x) is the Gegenbauer function of the first

kind, while n and n′ are radius vectors, with respect to the centre of S
N ,

of the observation and source points, respectively. The Green’s function
G(N)(λ;n,n′) fails to exist whenever λ is such that it holds that λ(λ +
N − 1) = L(L + N − 1), with L ∈ N. For these exceptional cases,
the generalized (known also as ‘modified’ or ‘reduced’) Green’s function
Ḡ

(N)
L (n,n′) is considered. It is shown that Ḡ

(N)
L (n,n′) may be expressed

compactly in terms of the Gegenbauer polynomial C
((N−1)/2)

L (n ·n′) and
the derivative

[
∂C

((N−1)/2)

λ (−n · n′)/∂λ
]
λ=L

. Explicit expressions for the

derivatives
[
∂C

(n)
λ (x)/∂λ

]
λ=L

and
[
∂C

(n+1/2)

λ (x)/∂λ
]
λ=L

, with n ∈ N, are

found and used to transform the functions Ḡ
(2n+1)
L (n,n′) and Ḡ

(2n+2)
L (n,n′) to

potentially more useful forms.

PACS numbers: 02.30.Jr, 02.30.Gp, 02.30.Hq

1. Introduction

The Green’s functions technique is known to be one of the most valuable mathematical tools
used in theoretical physics [1–10]. Because of this, Green’s functions, particularly those
for partial differential operators of mathematical physics, are themselves frequent objects of
studies. The present paper contributes to the theory of Green’s functions for the Helmholtz
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operator. Specifically, we shall investigate the Green’s function and, in those particular cases
where the latter fails to exists, the generalized Green’s function for the Helmholtz operator on
the N-dimensional (with N � 1) hypersphere S

N in the Euclidean space R
N+1 [11].

The motivation for the present study has arisen in the course of a research aimed at
developing a variant of the perturbation theory for atomic processes within the framework
of the adiabatic hyperspherical formalism [12–21]. The approach (to be described in detail
elsewhere) starts with converting a differential eigenproblem for the adiabatic hyperspherical
Hamiltonian into an integral one; this is achieved with the use of the hyperspherical Helmholtz
Green’s function constructed in this work.

The structure of the paper is as follows. In section 2, we recall basic facts about the
hyperspherical Laplace and Helmholtz operators. Also, we summarize these properties of their
eigenfunctions—hyperspherical harmonics—which shall find applications in later sections. In
section 3, we arrive at the closed form of the Green’s function for the hyperspherical Helmholtz
operator; we also point at misprints in [22], where the analogous formula appeared. For some
particular values of the propagation constant, the Green’s function found in section 3 fails to
exists. Then, however, one may define a generalized (known also as ‘reduced’ or ‘modified’)
Green’s function for the hyperspherical Helmholtz operator. We discuss this object in section 4.
First, we present a compact general formula for the generalized Green’s function under study;
this formula contains a derivative of the Gegenbauer function of the first kind with respect to
its degree. If 1 � N � 3, the Gegenbauer function involved may be expressed in terms of
the Chebyshev function of the first kind (for N = 1), the Legendre function of the first kind
(for N = 2) and the Chebyshev function of the second kind (for N = 3), and we exploit this
fact to derive more explicit forms of the generalized Helmholtz Green’s functions in these
particular cases. Finally, we proceed to discussing in sequence the cases of N arbitrary odd
and N arbitrary even. We derive formulae for the derivatives of the Gegenbauer functions of
the first kinds, C

(n)
λ (x) and C

(n+1/2)

λ (x), where n ∈ N, with respect to their degrees, evaluated
at non-negative values of the latter, i.e., for

[
∂C

(n)
λ (x)/∂λ

]
λ=L

and
[
∂C

(n+1/2)

λ (x)/∂λ
]
λ=L

,
where L ∈ N. These formulae, which also seem to be of interest from the point of view
of the theory of special functions, are then used to obtain explicit representations of the
generalized Helmholtz Green’s functions in the aforementioned two cases. The paper ends
with an appendix in which we summarize those properties of the Gegenbauer, Legendre and
Chebyshev functions and polynomials, which have found applications in the present work.

2. Laplace and Helmholtz operators, and their eigenfunctions, on the surface of the unit
sphere in R

N+1

Let S
N , with N � 1, be the surface of the unit sphere in the Euclidean space R

N+1. We shall
denote by {ek}, with k = 1, . . . , N + 1, unit vectors of a Cartesian coordinate system in R

N+1,
the origin of which is located at the centre of S

N . For any point on S
N , its radius vector n is

uniquely determined [23, 24] by specifying N real angles {ϑk} (k = 1, . . . , N ) restricted by

0 � ϑk � π (k = 1, 2, . . . , N − 1) (2.1a)

0 � ϑN < 2π (2.1b)

and such that

ek · n = cos ϑk

k−1∏
k′=1

sin ϑk′ (k = 1, 2, 3, . . . , N) (2.2a)
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eN+1 ·n =
N∏

k′=1

sin ϑk′ . (2.2b)

(In equation (2.2a), and hereafter, we adopt the convention which states that if the upper limit
of a product index is less by unity than the lower one, then the product’s value equals unity.)

The infinitesimal surface element on S
N is

dNn =
N∏

k=1

dϑk sinN−k ϑk (2.3)

and the surface area of S
N (i.e., the total solid angle about a point in R

N+1) is

SN =
∮

S
N

dNn = 2π(N+1)/2

�
(

N+1
2

) . (2.4)

The Laplace differential operator on S
N (the N-dimensional spherical Laplacian) is defined

in terms of the angles {ϑk} as [23–25]

∇2
n =

N∑
k=1

(
k−1∏
k′=1

sin−2 ϑk′

) (
∂2

∂ϑ2
k

+ (N − k) cot ϑk

∂

∂ϑk

)

=
N∑

k=1

(
k−1∏
k′=1

sin−2 ϑk′

)
sin−(N−k) ϑk

∂

∂ϑk

(
sinN−k ϑk

∂

∂ϑk

)
. (2.5)

The Helmholtz differential operator on S
N (the N-dimensional spherical Helmholtz operator)

is then defined as

H(N)(λ;n) = ∇2
n + λ(λ + N − 1) (2.6)

where, for the sake of later convenience, we have expressed the square of the (in general
complex) propagation constant in terms of the parameter λ ∈ C.

If the Laplacian (2.5) is constrained to operate on functions which are single-valued
and non-singular on S

N , its eigenfunctions are the hyperspherical harmonics
{
Y

(N)
lm (n)

}
(see

[24, 26–31]), which obey

∇2
nY

(N)
lm (n) = −l(l + N − 1)Y

(N)
lm (n) (l ∈ N). (2.7)

Evidently, it holds that[∇2
n + λ(λ + N − 1)

]
Y

(N)
lm (n) = [λ(λ + N − 1) − l(l + N − 1)]Y (N)

lm (n), (2.8)

i.e., the hyperspherical harmonics are also eigenfunctions of the Helmholtz operator (2.6).
Eigenvalues in equations (2.7) and (2.8) appear to be d

(N)
l -fold degenerate, with

d
(N)
l =




(2l + N − 1)(l + N − 2)!

l!(N − 1)!
for l � 1

1 for l = 0
(2.9)

and the second subscript at Y
(N)
lm (n) serves to distinguish between d

(N)
l linearly independent

harmonics associated with a particular eigenvalue of ∇2
n (or H(N)(λ;n)).

We shall not give here the explicit expression for the hyperspherical harmonics since its
knowledge is unnecessary to achieve the goal of this work; the interested reader is referred to
[24, 26–31]. Instead, below we shall summarize these properties of

{
Y

(N)
lm (n)

}
which have

proved to be useful in the present context.
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First, the hyperspherical harmonics may be chosen to be orthonormal over S
N in the sense

of ∮
S

N

dNn Y
(N)∗
lm (n)Y

(N)
l′m′ (n) = δll′δmm′ (2.10)

and throughout the rest of the work it will be assumed that the relation (2.10) holds. Second,
they form a complete set in the space L2(SN, dNn) and this fact is reflected by the closure
relation

∞∑
l=0

d
(N)
l∑

m=1

Y
(N)
lm (n)Y

(N)∗
lm (n′) = δ(N)(n − n′). (2.11)

In equation (2.11), and hereafter, δ(N)(n − n′) is the Dirac delta distribution on S
N ; it may be

expressed in terms of the one-dimensional Dirac delta as1

δ(N)(n − n′) = 2

SN−1

δ(1 − n ·n′)
[1 − (n · n′)2]N/2−1

. (2.12)

The last property of
{
Y

(N)
lm (n)

}
we wish to highlight here is the so-called addition theorem

which states that [24, 26–28, 30]

d
(N)
l∑

m=1

Y
(N)∗
lm (n)Y

(N)
lm (n′) = 2l + N − 1

(N − 1)SN

C
((N−1)/2)

l (n · n′) (2.13)

where C
(α)
l (x) is the Gegenbauer polynomial (cf the appendix).

3. Green’s function for the Helmholtz operator on S
N

3.1. General considerations

The Green’s function, G(N)(λ;n,n′), for the Helmholtz operator (2.6) is defined formally
as a single-valued and finite (except for the point n′ whenever N � 2) solution to the
inhomogeneous Helmholtz differential equation (n′ fixed)[∇2

n + λ(λ + N − 1)
]
G(N)(λ;n,n′) = δ(N)(n − n′) (3.1)

with the right-hand side being the Dirac delta distribution (2.12). Invoking facts known from
the general theory of Green’s functions [1–10], from equations (3.1), (2.8), (2.10) and (2.11)
we deduce that G(N)(λ;n,n′) has the spectral expansion

G(N)(λ;n,n′) =
∞∑
l=0

d
(N)
l∑

m=1

Y
(N)
lm (n)Y

(N)∗
lm (n′)

λ(λ + N − 1) − l(l + N − 1)
. (3.2)

The expansion (3.2) may be simplified upon using the addition theorem (2.13); one obtains

G(N)(λ;n,n′) = 1

(N − 1)SN

∞∑
l=0

2l + N − 1

(λ − l)(λ + N + l − 1)
C

((N−1)/2)

l (n ·n′) (3.3)

1 To avoid misunderstandings, we emphasize that in this paper we adopt this particular definition of the one-
dimensional Dirac delta function, according to which for any test function f (x) it holds that∫ x1

x0

dx δ(x − x1)f (x) = 1

2
f (x1) (x0 < x1).
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or equivalently

G(N)(λ;n,n′) = 1

(N − 1)SN

∞∑
l=0

(
1

λ − l
− 1

λ + N + l − 1

)
C

((N−1)/2)

l (n · n′). (3.4)

After due notational changes (λ → α,N → n − 1, SN → ωn−1,n → ω, n′ → υ), the
right-hand side of equation (3.4) should replace the misprinted expression at the bottom of
p 555 in [22].

Two inferences may be drawn from equation (3.3). The first one is that the Green’s
function G(N)(λ;n,n′) depends on the radius vectors n and n′ through their scalar product
n · n′ only; in other words, it holds that

G(N)(λ;n,n′) ≡ F (N)(λ; cos θ) (3.5)

where

θ = � (n,n′). (3.6)

The second inference is that the analysis of equation (3.3) requires special care when N = 1;
because of this, in the following subsection this particular case will be treated separately.

3.2. The case of N = 1

Separating out in equation (3.3) the term with l = 0, rewriting subsequently the remaining
series with the formal use of the property (A.2), applying equation (A.20) and exploiting the
fact that S1 = 2π yields G(1)(λ;n,n′) as a series of the Chebyshev polynomials of the first
kind (cf the appendix):

G(1)(λ;n,n′) = 1

2πλ2
+

1

π

∞∑
l=1

1

λ2 − l2
Tl(n · n′) (3.7)

or still more explicitly

G(1)(λ;n,n′) = 1

2πλ2
+

1

π

∞∑
l=1

cos[l arccos(n · n′)]
λ2 − l2

. (3.8)

On the other hand, it is easily provable that the function cos(λx) has the Fourier expansion

cos(λx) = sin(πλ)

π

(
1

λ
+ 2λ

∞∑
l=1

cos[l(π − x)]

λ2 − l2

)
(−π � x � π). (3.9)

Comparing equations (3.8) and (3.9) one finds that

G(1)(λ;n,n′) = cos[λ arccos(−n ·n′)]
2λ sin(πλ)

(3.10)

or equivalently

G(1)(λ;n,n′) = 1

2λ sin(πλ)
Tλ(−n ·n′) (3.11)

where Tλ(x) is the Chebyshev function of the first kind (see the appendix). For the sake of
later comparison with the main result of section 3.3, it is convenient to rewrite equation (3.11),
with the use of relation (A.20), in the form

G(1)(λ;n,n′) = π

2S1 sin(πλ)
C

(0)
λ (−n · n′) (3.12)

where C
(α)
λ (x) is the Gegenbauer function of the first kind (cf again the appendix).
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3.3. The case of N � 2

We proceed to discussing the case of N � 2. To simplify the analysis, we may exploit the
property of G(N)(λ;n,n′) expressed in equations (3.5) and (3.6). We choose the Cartesian
basis, introduced at the beginning of section 2, in such a manner that the unit vector e1

coincides with the radius vector n′ specifying the observation point. With this choice, it holds
that

θ = ϑ1 (3.13)

so that, in virtue of equations (3.1), (2.5), (2.12) and (3.5), we have[
d

dθ

(
sinN−1 θ

d

dθ

)
+ λ(λ + N − 1) sinN−1 θ

]
F (N)(λ; cos θ)

= 2

SN−1
sin θδ(1 − cos θ) (0 � θ � π). (3.14)

The distributional equation (3.14) contains two pieces of information. First, it says that
the function F (N)(λ; cos θ) is regular on the interval 0 < θ � π and satisfies here the
homogeneous equation[

d

dθ

(
sinN−1 θ

d

dθ

)
+ λ(λ + N − 1) sinN−1 θ

]
F (N)(λ; cos θ) = 0 (0 < θ � π).

(3.15)

Second, it informs that at the end point θ = 0 the following limiting relation holds:

lim
θ↓0

sinN−1 θ
dF (N)(λ; cos θ)

dθ
= 1

SN−1
(3.16)

(cf the footnote to equation (2.12)). From what has been said above, F (N)(λ; cos θ) may be
determined uniquely. Indeed, changing in equation (3.15) the independent variable to

x = cos θ (3.17)

yields[
(1 − x2)

d2

dx2
− Nx

d

dx
+ λ(λ + N − 1)

]
F (N)(λ; x) = 0 (−1 � x < 1). (3.18)

This is a particular case of the Gegenbauer differential equation (A.12) and the requirement of
regularity of F (N)(λ; x) in the interval −1 � x < 1, including the point x = −1, leads to the
inference that F (N)(λ; x) may be expressed in terms of the Gegenbauer function of the first
kind (cf the appendix) as

F (N)(λ; x) = A(N)(λ)C
((N−1)/2)

λ (−x) (3.19)

where A(N)(λ) is a constant which remains to be determined. Returning to the angular variable
θ , plugging equation (3.19) into the constraint (3.16) and making the limiting passage with
the aid of equation (A.11) yields

A(N)(λ) = π

(N − 1)SN sin(πλ)
. (3.20)

On combining equations (3.5), (3.19) and (3.20), we arrive at

G(N)(λ;n,n′) = π

(N − 1)SN sin(πλ)
C

((N−1)/2)

λ (−n · n′) (N � 2). (3.21)

In the particular case N = 2, the Gegenbauer function in equation (3.21) becomes the
Legendre function of the first kind (cf equations (A.21) and (A.19)) and equation (3.21) yields
the well-known [32–42] result for the Helmholtz Green’s function on S

2:

G(2)(λ;n,n′) = 1

4 sin(πλ)
Pλ(−n ·n′). (3.22)
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3.4. Unification

In sections 3.2 and 3.3, we have shown that in the cases N = 1 and N � 2 the Green’s
function for the Helmholtz operator (2.6) is given by equations (3.12) and (3.21), respectively.
However, it is easy to see that, in view of the defining relation (A.2), equations (3.12) and
(3.21) may be unified into a single formula

G(N)(λ;n,n′) = π

(N − 1)SN sin(πλ)
C

((N−1)/2)

λ (−n ·n′). (3.23)

This is the main result of section 3. After the notational changes mentioned below
equation (3.4), the formula in equation (3.23) should replace the one in equation (5.1) in
[22].

4. The generalized Green’s function for the Helmholtz operator on S
N

4.1. Compact closed form of the generalized Green’s function for the Helmholtz operator
on S

N

It is seen from the spectral expansion (3.2) that the Green’s function G(N)(λ;n,n′) for the
Helmholtz operator (2.6) fails to exist when

λ(λ + N − 1) = L(L + N − 1) (L ∈ N). (4.1)

In this case one may still consider the generalized Green’s function Ḡ
(N)
L (n,n′), defined

formally as a solution to the inhomogeneous Helmholtz equation

[∇2
n + L(L + N − 1)

]
Ḡ

(N)
L (n,n′) = δ(N)(n − n′) −

d
(N)
L∑

M=1

Y
(N)
LM (n)Y

(N)∗
LM (n′) (4.2)

subject to the orthogonality constraint∮
S

N

dNn Y
(N)∗
LM (n)Ḡ

(N)
L (n,n′) = 0

(
M ∈ {

1, 2, . . . , d
(N)
L

})
. (4.3)

Exploiting the closure relation (2.11) and the orthonormality property (2.10), it is easy to see
that the expansion of Ḡ

(N)
L (n,n′) in the basis of the hyperspherical harmonics is

Ḡ
(N)
L (n,n′) =

∞∑
l=0

(l �=L)

d
(N)
l∑

m=1

Y
(N)
lm (n)Y

(N)∗
lm (n′)

L(L + N − 1) − l(l + N − 1)
. (4.4)

On making use of the expansions (4.4) and (3.2), it may be verified that the following
limiting relation holds:

Ḡ
(N)
L (n,n′) = lim

λ(λ+N−1)→L(L+N−1)

∂

∂[λ(λ + N − 1)]

×{[λ(λ + N − 1) − L(L + N − 1)]G(N)(λ;n,n′)}. (4.5)

Combining this result with the closed representation (3.23) of G(N)(λ;n,n′), after obvious
transformations one finds

Ḡ
(N)
L (n,n′) = π

(N − 1)SN

lim
λ→L

1

2λ + N − 1

∂

∂λ

(λ − L)(λ + L + N − 1)

sin(πλ)
C

((N−1)/2)

λ (−n · n′).

(4.6)
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The limiting passage in equation (4.6) is easily accomplished with the aid of the l’Hospital
rule. This results in the following compact expression for the generalized Green’s function
for the Helmholtz operator on S

N :

Ḡ
(N)
L (n,n′) = (−)L

(N − 1)SN

∂C
((N−1)/2)

λ (−n ·n′)
∂λ

∣∣∣∣
λ=L

+
1

(N − 1)(2L + N − 1)SN

C
((N−1)/2)

L (n ·n′) (4.7)

valid except for the case when it holds simultaneously that N = 1 and L = 0; this exceptional
event will be considered in section 4.2, where we shall look at the case of N = 1 in detail.

4.2. The case of N = 1

In this particular case, in virtue of the defining equation (A.2), the result (4.7) simplifies to

Ḡ
(1)
L (n,n′) = (−)L

4π

∂C
(0)
λ (−n ·n′)

∂λ

∣∣∣∣
λ=L

+
1

8π
C

(0)
L (n ·n′) (L �= 0). (4.8)

On exploiting the relation (A.20), linking the Gegenbauer and the Chebyshev functions of the
first kinds, equation (4.8) may be cast into the form

Ḡ
(1)
L (n,n′) = (−)L

2πL

∂Tλ(−n ·n′)
∂λ

∣∣∣∣
λ=L

− 1

4πL2
TL(n · n′) (L �= 0). (4.9)

However, it follows from equations (A.16) and (A.17) that

∂Tλ(x)

∂λ
= −Uλ−1(x)

√
1 − x2 arccos x (4.10)

where Uλ(x) is the Chebyshev function of the second kind, and consequently we find that if
L �= 0, then the explicit expression for the generalized Helmholtz Green’s function Ḡ

(1)
L (n,n′)

is

Ḡ
(1)
L (n,n′) = 1

2πL
UL−1(n ·n′)

√
1 − (n · n′)2 arccos(−n ·n′)

− 1

4πL2
TL(n · n′) (L �= 0). (4.11)

To study the case of L = 0, we use the unconstrained formula (4.6), which, in virtue of
equations (A.2) and (A.20), for N = 1 and L = 0 becomes

Ḡ
(1)
L (n,n′) = 1

4
lim
λ→0

1

λ

∂

∂λ

λ

sin(πλ)
Tλ(−n ·n′). (4.12)

From this, with no difficulty we find that the explicit expression for the generalized Helmholtz
Green’s function Ḡ

(1)
0 (n,n′) is

Ḡ
(1)
0 (n,n′) = − 1

4π
[arccos(−n ·n′)]2 +

π

12
. (4.13)

4.3. The case of N = 2

This particular case has been studied in detail by the present author in [42]. Therefore, here
we shall summarize only the main results of that study.

The generalized Green’s function Ḡ
(2)
L (n,n′) may be expressed as

Ḡ
(2)
L (n,n′) = (−)L

4π

∂Pλ(−n · n′)
∂λ

∣∣∣∣
λ=L

+
1

4π(2L + 1)
PL(n ·n′) (4.14)
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where Pλ(x) is the Legendre function of the first kind and PL(x) is the Legendre polynomial
(cf the appendix); equation (4.14) also follows from equations (4.7), (2.4) and (A.21). It can
be shown [42–44] that the explicit representation of the derivative [∂Pλ(x)/∂λ]λ=L is

∂Pλ(x)

∂λ

∣∣∣∣
λ=L

= PL(x) ln
1 + x

2
+ 2

L−1∑
l=0

(−)L+l 2l + 1

(L − l)(L + l + 1)
[Pl(x) − PL(x)]. (4.15)

(Here and below we adopt the convention which states that if the upper limit of a summation
index is less by unity than the lower one, then the sum vanishes identically.) Combining
equations (4.14) and (4.15), one finds

Ḡ
(2)
L (n,n′) = 1

4π
PL(n ·n′) ln

1 − n · n′

2
+

1

2π

L−1∑
l=0

2l + 1

(L − l)(L + l + 1)
Pl(n · n′)

+
1

4π

(
1

2L + 1
− 2

L−1∑
l=0

(−)L+l 2l + 1

(L − l)(L + l + 1)

)
PL(n ·n′) (4.16)

or equivalently

Ḡ
(2)
L (n,n′) = 1

4π
PL(n ·n′) ln

1 − n · n′

2
+

1

2π

L−1∑
l=0

2l + 1

(L − l)(L + l + 1)
Pl(n · n′)

+
1

4π
[ψ(2L + 2) + ψ(2L + 1) − 2ψ(L + 1)]PL(n · n′) (4.17)

where

ψ(z) = 1

�(z)

d�(z)

dz
(4.18)

is the digamma function [45]. The identity
L−1∑
l=0

(−)L+l+1 2l + 1

(L − l)(L + l + 1)
= ψ(2L + 1) − ψ(L + 1) (4.19)

which has been used to pass from equation (4.16) to equation (4.17) is easily provable with
the aid of the known formula [45]

ψ(L + 1) = −γ +
L∑

l=1

1

l
(4.20)

with γ denoting the Euler–Mascheroni constant.

4.4. The case of N = 3

This is the last particular case we wish to consider. From equations (4.7), (2.4) and (A.22) we
have

Ḡ
(3)
L (n,n′) = (−)L

4π2

∂Uλ(−n ·n′)
∂λ

∣∣∣∣
λ=L

+
1

8π2(L + 1)
UL(n ·n′). (4.21)

However, on making use of the definitions (A.17) and (A.16) it may be easily shown that
∂Uλ(x)

∂λ
= Tλ+1(x)

arccos x√
1 − x2

. (4.22)

Combining equations (4.21) and (4.22) yields the following final result for the generalized
Helmholtz Green’s function in the case considered here:

Ḡ
(3)
L (n,n′) = − 1

4π2
TL+1(n ·n′)

arccos(−n ·n′)√
1 − (n · n′)2

+
1

8π2(L + 1)
UL(n ·n′). (4.23)



1004 R Szmytkowski

4.5. The general case of N odd

Having discussed in sections 4.2 and 4.4 the particular cases N = 1 and N = 3, now we
proceed to analysing the case of N arbitrary odd:

N = 2n + 1 (n ∈ N). (4.24)

The only restriction imposed in what follows is that n = 0 and L = 0 cannot hold
simultaneously (note, however, that this exceptional case has been already discussed at the
end of section 4.2).

Under the constraint (4.24), equation (4.7) becomes

Ḡ
(2n+1)
L (n,n′) = (−)L

1

2nS2n+1

∂C
(n)
λ (−n · n′)

∂λ

∣∣∣∣
λ=L

+
1

2n(L + n)S2n+1
C

(n)
L (n ·n′). (4.25)

It follows from equation (A.15) that the Gegenbauer function C
(n)
λ (x) may be expressed as

C
(n)
λ (x) = 1

2n(n − 1)!

dnC
(0)
λ+n(x)

dxn
(4.26)

or, in virtue of equation (A.20), equivalently as

C
(n)
λ (x) = 1

2n−1(n − 1)!(λ + n)

dnTλ+n(x)

dxn
. (4.27)

Hence, we infer that the derivative ∂C
(n)
λ (x)/∂λ may be written as

∂C
(n)
λ (x)

∂λ
= 1

2n−1(n − 1)!(λ + n)

dn

dxn

∂Tλ+n(x)

∂λ
− 1

λ + n
C

(n)
λ (x). (4.28)

Making here use of the earlier result (4.10) and of equation (A.22), performing then the
n-fold differentiation with respect to x with the aid of the Leibniz theorem, and exploiting
equation (A.14) we find

∂C
(n)
λ (x)

∂λ
= − 2n

λ + n

n∑
k=0

1

2kk!
C

(n−k+1)
λ+k−1 (x)Xk(x) − 1

λ + n
C

(n)
λ (x) (4.29)

where we define

Xk(x) = dk

dxk

√
1 − x2 arccos x. (4.30)

The function Xk(x) may be easily shown to be of the form

Xk(x) = Ak(x)

(1 − x2)k−1/2
arccos x +

Bk(x)

(1 − x2)k−1
(4.31)

where Ak(x) and Bk(x) are polynomials obeying the differential-difference relations

Ak+1(x) = (1 − x2)
dAk(x)

dx
+ (2k − 1)xAk(x) (4.32a)

and

Bk+1(x) = (1 − x2)
dBk(x)

dx
+ 2(k − 1)xBk(x) − Ak(x) (4.32b)

subject to the initial conditions

A0(x) = 1 B0(x) = 0. (4.33)
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On combining equations (4.25) and (4.29), we arrive at the final result

Ḡ
(2n+1)
L (n,n′) = 1

(L + n)S2n+1

n∑
k=0

(−)k

2kk!
C

(n−k+1)
L+k−1 (n · n′)Xk(−n · n′)

− 1

4n(L + n)S2n+1
C

(n)
L (n · n′). (4.34)

Exploiting equations (A.2), (A.20), (A.22), (4.31) and (4.33), it is not difficult to verify
that for n = 0 equation (4.34) goes over into equation (4.11). Similarly, if n = 1, the
use of equations (4.31)–(4.33), (A.13), (A.22) and (A.18) transforms equation (4.34) into
equation (4.23).

4.6. The general case of N even

Finally, we proceed to considering the case when N is arbitrary even:

N = 2n + 2 (n ∈ N). (4.35)

In this case, equation (4.7) becomes

Ḡ
(2n+2)
L (n,n′) = (−)L

1

(2n + 1)S2n+2

∂C
(n+1/2)

λ (−n ·n′)
∂λ

∣∣∣∣
λ=L

+
1

(2n + 1)(2L + 2n + 1)S2n+2
C

(n+1/2)

L (n · n′). (4.36)

To transform the expression on the right-hand side of equation (4.36) to a more tractable form,
we have to evaluate the derivative

[
∂C

(n+1/2)

λ (x)/∂λ
]
λ=L

. To this end, we first observe that
equation (A.14) gives

C
(n+1/2)

λ (x) = 1

(2n − 1)!!

dnC
(1/2)

λ+n (x)

dxn
(4.37)

hence, in virtue of the relationship (A.21), we have

C
(n+1/2)

λ (x) = 1

(2n − 1)!!

dnPλ+n(x)

dxn
(4.38)

and further

∂C
(n+1/2)

λ (x)

∂λ

∣∣∣∣
λ=L

= 1

(2n − 1)!!

dn

dxn

∂Pλ(x)

∂λ

∣∣∣∣
λ=L+n

. (4.39)

On inserting here our finding (4.15), after subsequent use of equations (4.19), (A.21) and
(A.14), we arrive at

∂C
(n+1/2)

λ (x)

∂λ

∣∣∣∣
λ=L

= C
(n+1/2)

L (x) ln
1 + x

2

− n!

(2n − 1)!!

n∑
k=1

(−)k
(2n − 2k − 1)!!

k(n − k)!

C
(n−k+1/2)

L+k (x)

(1 + x)k

+ 2
L−1∑
l=0

(−)L+l 2l + 2n + 1

(L − l)(L + 2n + l + 1)
C

(n+1/2)

l (x)

+ 2[ψ(2L + 2n + 1) − ψ(L + n + 1)]C(n+1/2)

L (x). (4.40)
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With equation (4.40) in hand, we may finally rewrite the generalized Green’s function (4.36)
as

Ḡ
(2n+2)
L (n,n′) = 1

(2n + 1)S2n+2
C

(n+1/2)

L (n ·n′) ln
1 − n ·n′

2

− n!

(2n + 1)!!S2n+2

n∑
k=1

(2n − 2k − 1)!!

k(n − k)!

C
(n−k+1/2)

L+k (n · n′)
(1 − n · n′)k

+
2

(2n + 1)S2n+2

L−1∑
l=0

2l + 2n + 1

(L − l)(L + 2n + l + 1)
C

(n+1/2)

l (n · n′)

+
1

(2n + 1)S2n+2
[ψ(2L + 2n + 2) + ψ(2L + 2n + 1)

− 2ψ(L + n + 1)]C(n+1/2)

L (n ·n′). (4.41)

It is easy to check that particularizing equation (4.41) to the case n = 0 yields the result given
in equation (4.17).

Appendix. Gegenbauer, Legendre and Chebyshev functions and polynomials

In this appendix, we summarize these properties of the Gegenbauer, Legendre and Chebyshev
functions and polynomials, which have proved to be useful in the considerations carried out
in sections 3 and 4. The presented formulae have been excerpted from [24, 45–47].

Throughout the whole appendix, x is a real variable from the interval −1 � x � 1.
For α �= 0, the Gegenbauer function (of the first kind) is defined as

C
(α)
λ (x) = �(λ + 2α)

�(λ + 1)�(2α)
2F1

(
−λ, λ + 2α;α +

1

2
; 1 − x

2

)
(A.1)

where 2F1 is the Gauss hypergeometric series. For α = 0 and λ �= 0, it is defined through the
limiting procedure

C
(0)
λ (x) = lim

α→0

1

α
C

(α)
λ (x) (A.2)

so that

C
(0)
λ (x) = 2

λ
2F1

(
−λ, λ; 1

2
; 1 − x

2

)
= 2

λ
cos(λ arccos x) (A.3)

while for α = 0 and λ = 0, by definition, one has

C
(0)
0 (x) = 1. (A.4)

When λ = L ∈ N, the function C
(α)
λ (x) degenerates to the Gegenbauer (ultraspherical)

polynomial. If α �= 0, this polynomial is given by the Rodrigues-type formula

C
(α)
L (x) = (−)L

√
π

2L+2α−1L!

�(L + 2α)

�(α)�
(
L + α + 1

2

) (1 − x2)−α+1/2 dL

dxL
(1 − x2)L+α−1/2. (A.5)

If α = 0 and L �= 0, from equations (A.2) and (A.5) one finds

C
(0)
L (x) = (−)L

2

L(2L − 1)!!

√
1 − x2

dL

dxL
(1 − x2)L−1/2. (A.6)

The case of α = 0 and L = 0 is covered by equation (A.4). The Gegenbauer polynomials
have a definite parity with respect to the reflection at x = 0; one has

C
(α)
L (−x) = (−)LC

(α)
L (x). (A.7)
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For α �= 0 it holds that2

C
(α)
λ (x) =

√
π

2α−1/2

�(λ + 2α)

�(λ + 1)�(α)
(1 − x2)−α/2+1/4P

(−α+1/2)

λ+α−1/2 (x) (A.8)

where

P (µ)
ν (x) = 1

�(1 − µ)

(
1 + x

1 − x

)µ/2

2F1

(
−ν, ν + 1; 1 − µ; 1 − x

2

)

= 2µ

�(1 − µ)
(1 − x2)−µ/2

2F1

(
−ν − µ, ν + 1 − µ; 1 − µ; 1 − x

2

)
(A.9)

is the associated Legendre function of the first kind. From the relationship (A.8) and from the
following limiting representations

P (µ)
ν (x)

x↓−1−→




�(−µ)

2µ/2�(−ν − µ)�(ν + 1 − µ)
(1 + x)µ/2 for µ < 0

sin(πν)

π
ln(1 + x) for µ = 0,

(A.10)

it may be inferred that

C
(α)
λ (x)

x↓−1−→




− sin(πλ)√
π

�
(
α − 1

2

)
2α−1/2�(α)

(1 + x)−α+1/2 for α >
1

2

sin(πλ)

π
ln(1 + x) for α = 1

2
.

(A.11)

The Gegenbauer functions C
(α)
λ (x) and C

(α)
λ (−x) satisfy the second-order linear

differential equation[
(1 − x2)

d2

dx2
− (2α + 1)x

d

dx
+ λ(λ + 2α)

]
F(x) = 0. (A.12)

If α � 1
2 and λ �∈ N, the function C

(α)
λ (−x) is the only (up to a multiplicative factor) solution

to the above equation which remains finite at x = −1.
Among useful properties of the Gegenbauer functions there are: the recurrence relation

2α(1 − x2)C
(α+1)
λ−1 (x) = (λ + 2α)xC

(α)
λ (x) − (λ + 1)C

(α)
λ+1(x) (A.13)

and the differential relations

dnC
(α)
λ (x)

dxn
= 2n �(α + n)

�(α)
C

(α+n)
λ−n (x) (α �= 0) (A.14)

dnC
(0)
λ (x)

dxn
= 2n(n − 1)!C(n)

λ−n(x). (A.15)

The Chebyshev functions of the first and the second kinds are defined as

Tλ(x) = cos(λ arccos x) (A.16)

and

Uλ(x) = sin[(λ + 1) arccos x]

sin(arccos x)
= sin[(λ + 1) arccos x]√

1 − x2
, (A.17)

2 Equation (A.8) does not contradict equations (10.9.33) in [24] and (3.15.4) in [46] since the definition of the
associated Legendre function used therein differs by a phase factor from ours.
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respectively. A relationship between the Chebyshev functions is

Uλ+1(x) − xUλ(x) = Tλ+1(x). (A.18)

The Legendre function of the first kind is defined as

Pλ(x) = 2F1

(
−λ, λ + 1; 1; 1 − x

2

)
. (A.19)

All these three functions are simply related to the Gegenbauer functions; it holds that

Tλ(x) =
{

1
2λC

(0)
λ (x) for λ �= 0

C
(0)
0 (x) for λ = 0

(A.20)

Pλ(x) = C
(1/2)

λ (x) (A.21)

and

Uλ(x) = C
(1)
λ (x). (A.22)

When λ = L ∈ N, the functions in question degenerate to polynomials named after their
parent functions and given by the Rodrigues-type formulae

TL(x) = (−)L
1

(2L − 1)!!

√
1 − x2

dL

dxL
(1 − x2)L−1/2 (A.23)

PL(x) = 1

2LL!

dL

dxL
(x2 − 1)L (A.24)

and

UL(x) = (−)L
L + 1

(2L + 1)!!

1√
1 − x2

dL

dxL
(1 − x2)L+1/2, (A.25)

respectively.
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[46] Erdélyi A (ed) 1953 Higher Transcendental Functions vol 1 (New York: McGraw-Hill)
[47] Gradshteyn I S and Ryzhik I M 1994 Table of Integrals, Series, and Products 5th edn (San Diego: Academic)

http://dx.doi.org/10.1088/0953-4075/32/6/004
http://dx.doi.org/10.1088/0953-4075/35/10/304
http://dx.doi.org/10.1103/PhysRevA.68.012703
http://dx.doi.org/10.1103/PhysRevA.71.012504
http://dx.doi.org/10.1007/s00041-002-0026-1
http://dx.doi.org/10.1063/1.526621
http://dx.doi.org/10.1137/0153034
http://dx.doi.org/10.1109/8.318651
http://dx.doi.org/10.1016/0165-2125(94)00049-B
http://dx.doi.org/10.1016/0021-8928(96)00010-X
http://dx.doi.org/10.1109/8.496260
http://dx.doi.org/10.1137/S003613999833366X
http://dx.doi.org/10.1023/A:1016316406102
http://dx.doi.org/10.1016/S0165-2125(00)00055-X
http://dx.doi.org/10.1023/B:JOTH.0000034023.22584.75
http://dx.doi.org/10.1137/040603358
http://dx.doi.org/10.1063/1.2203430
http://dx.doi.org/10.1088/0305-4470/39/49/006

	1. Introduction
	2. Laplace and Helmholtz operators, and their eigenfunctions, on the surface of the unit sphere in
	3. Green's function for the Helmholtz
	3.1. General considerations
	3.2. The case of
	3.3. The case of
	3.4. Unification

	4. The generalized Green's function for the Helmholtz
	4.1. Compact closed form of the generalized
	4.2. The case of
	4.3. The case of
	4.4. The case of
	4.5. The general case
	4.6. The general case

	Appendix. Gegenbauer, Legendre and Chebyshev functions and polynomials
	References

